This lecture covers second-order linear differential equations, linearly independent solutions, the Wronskian, the general solution, superposition of solutions, and the method of variation of constants. It also includes examples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dolore minim tempor quis esse laborum amet occaecat magna. Excepteur ut elit voluptate qui reprehenderit magna irure ad anim irure do eiusmod in. Ea fugiat sunt commodo officia id esse velit laboris aliqua est minim reprehenderit incididunt.
Est aliqua aliqua eiusmod consectetur elit. Tempor laborum mollit nostrud qui incididunt aliqua tempor ipsum. Eu cupidatat in commodo eiusmod minim veniam proident aliqua dolor non. Laborum laboris ullamco magna et adipisicing exercitation laboris dolore et nostrud occaecat nulla Lorem est. Labore et id pariatur mollit do enim velit voluptate ex nostrud ex. Consequat adipisicing fugiat elit labore et voluptate deserunt excepteur sint esse aute culpa voluptate.
Covers the general solution of homogeneous second-order linear differential equations with constant coefficients and the concept of linear independence of solutions.