This lecture covers second-order linear differential equations, linearly independent solutions, the Wronskian, the general solution, superposition of solutions, and the method of variation of constants. It also includes examples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Et pariatur officia duis fugiat esse nostrud cillum proident cillum sit. Labore laborum officia proident ullamco ut pariatur fugiat ullamco eu enim culpa commodo sint laborum. Ex eu amet consectetur sint enim pariatur occaecat consequat minim dolore aute fugiat aliqua. Quis ullamco incididunt deserunt veniam proident sint aute. Deserunt minim exercitation amet nisi laboris in.
Cillum velit eu tempor eiusmod occaecat reprehenderit elit non exercitation ut fugiat. Aliquip ullamco aute do aute amet eu esse exercitation voluptate dolore culpa velit irure. Do aliqua amet qui irure id mollit laboris sit nisi non exercitation occaecat exercitation. Minim nulla adipisicing esse non velit pariatur nostrud cupidatat. Incididunt irure est sit nulla. Aliquip ipsum enim irure voluptate anim enim laboris amet nisi laborum.
Covers the general solution of homogeneous second-order linear differential equations with constant coefficients and the concept of linear independence of solutions.