Lecture

Machine Learning and Privacy

In course
DEMO: aute commodo elit
Nisi irure reprehenderit amet enim incididunt sint consectetur dolore minim dolor. Reprehenderit esse voluptate Lorem laboris esse sint cupidatat sit. Quis incididunt proident sunt aliqua aliqua deserunt pariatur ullamco id qui. Laboris eu pariatur magna sint do sit pariatur. Incididunt et elit id minim irure ullamco minim id nulla sint irure.
Login to see this section
Description

This lecture covers the fundamental concepts of machine learning and privacy, focusing on the confidentiality of training data, privacy concerns during the machine learning life cycle, and attacks on private data used to train models. It delves into membership inference attacks, gradient inversion, differential privacy, and the trade-offs between utility and privacy in federated learning. The lecture also discusses the challenges of differential privacy in small datasets and the disparate impact in federated learning, emphasizing the importance of protecting sensitive training data to prevent privacy breaches.

Instructors (2)
ut aute
Fugiat occaecat eiusmod sint enim. Labore commodo mollit laborum enim veniam velit duis officia. Veniam nulla do irure incididunt incididunt elit officia labore commodo veniam.
officia in occaecat deserunt
Ea veniam laboris officia commodo. Eu sunt nulla excepteur nulla ea veniam. Voluptate ipsum sunt esse ipsum anim duis.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.