Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Infrared spectroscopyInfrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify and verify known and unknown samples. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum.
Iterative methodIn computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones. A specific implementation with termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or quasi-Newton methods like BFGS, is an algorithm of the iterative method.
Multiplicity (mathematics)In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity". If multiplicity is ignored, this may be emphasized by counting the number of distinct elements, as in "the number of distinct roots".
Hadamard product (matrices)In mathematics, the Hadamard product (also known as the element-wise product, entrywise product or Schur product) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements. This operation can be thought as a "naive matrix multiplication" and is different from the matrix product. It is attributed to, and named after, either French-Jewish mathematician Jacques Hadamard or German-Jewish mathematician Issai Schur.
Space tourismSpace tourism is human space travel for recreational purposes. There are several different types of space tourism, including orbital, suborbital and lunar space tourism. During the period from 2001 to 2009, seven space tourists made eight space flights aboard a Russian Soyuz spacecraft to the International Space Station, brokered by Space Adventures in conjunction with Roscosmos and RSC Energia. The publicized price was in the range of US$20–25 million per trip.
Graded vector spaceIn mathematics, a graded vector space is a vector space that has the extra structure of a grading or gradation, which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers. For "pure" vector spaces, the concept has been introduced in homological algebra, and it is widely used for graded algebras, which are graded vector spaces with additional structures. Let be the set of non-negative integers.
Ε-quadratic formIn mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory. There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms.
Normal subgroupIn abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and The usual notation for this relation is Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group.
Rotation around a fixed axisRotation around a fixed axis or axial rotation is a special case of rotational motion around a axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.