Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we give a survey on various multiscale methods for the numerical solution of second order hyperbolic equations in highly heterogenous media. We concentrate on the wave equation and distinguish between two classes of applications. First we dis ...
Inspired by recent experiments using synthetic microswimmers to manipulate droplets, we investigate the low-Reynolds-number locomotion of a model swimmer (a spherical squirmer) encapsulated inside a droplet of a comparable size in another viscous fluid. Me ...
In this work, we consider an elliptic partial differential equation with a random coefficient solved with the stochastic collocation finite element method. The random diffusion coefficient is assumed to depend in an affine way on independent random variabl ...
In this work, a level-set based finite element method was used to numerically evaluate the mechanical behavior in a small deformation range of semi-solid materials with different microstructure configurations. For this purpose, a finite element model of th ...
Several models exist for the simulation of vascular flows; they span from simple circuit models to full three-dimensional ones that take into account detailed features of the blood and of the arterialwall. Eachmodel comeswith both benefits and drawbacks, t ...
Numerical software, common in scientific computing or embedded systems, inevitably uses a finite-precision approximation of the real arithmetic in which most algorithms are designed. In many applications, the roundoff errors introduced by finite-precision ...
In this paper, we introduce and analyze a new low-rank multilevel strategy for the solution of random diffusion problems. Using a standard stochastic collocation scheme, we first approximate the infinite dimensional random problem by a deterministic parame ...
Modeling wave propagation in highly heterogeneous media is of prime importance in engineering applications of diverse nature such as seismic inversion, medical imaging or the design of composite materials. The numerical approximation of such multiscale phy ...
In this paper we consider, from the numerical point of view, a thermoelastic diffusion porous problem. This is written as a coupled system of two hyperbolic equations, for the displacement and porosity fields, and two parabolic equations, for the temperatu ...
Multiscale or multiphysics partial differential equations are used to model a wide range of physical systems with various applications, e.g. from material and natural science to problems in biology or engineering. When the ratio between the smallest scale ...