Introduction to Object-Oriented Programming in Java
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary grap ...
Learning transformation invariant representations of visual data is an important problem in computer vision. Deep convolutional networks have demonstrated remarkable results for image and video classification tasks. However, they have achieved only limited ...
Recent past has seen a lot of developments in the field of image-based dietary assessment. Food image classification and recognition are crucial steps for dietary assessment. In the last couple of years, advancements in the deep learning and convolutional ...
This thesis addresses the problem of recovering the 3-D shape of a deformable object in single images, or image sequences acquired by a monocular video camera, given that a 3-D template shape and a template image of the object are available. While being a ...
Recent advances in Computer Vision are changing our way of living and enabling new applications for both leisure and professional use. Regrettably, in many industrial domains the spread of state-of-the-art technologies is made challenging by the abundance ...
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, ...
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
Automatically extracting linear structures from images is a fundamental low-level vision problem with numerous applications in different domains. Centerline detection and radial estimation are the first crucial steps in most Computer Vision pipelines aimin ...
Background: Automated segmentation of brain structures is an important task in structural and functional image analysis. We developed a fast and accurate method for the striatum segmentation using deep convolutional neural networks (CNN). New method: T1 ma ...
In this article, we review recent uses of convolutional neural networks (CNNs) to solve inverse problems in imaging. It has recently become feasible to train deep CNNs on large databases of images, and they have shown outstanding performance on object clas ...