Functional programmingIn computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can.
Formal verificationIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Scala (programming language)Scala (ˈskɑːlə ) is a strong statically typed high-level general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable.
Data structureIn computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type.
Persistent data structureIn computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure. The term was introduced in Driscoll, Sarnak, Sleator, and Tarjans' 1986 article. A data structure is partially persistent if all versions can be accessed but only the newest version can be modified.
Satisfiability modulo theoriesIn computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers).
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Automated theorem provingAutomated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science. While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics.
Purely functional data structureIn computer science, a purely functional data structure is a data structure that can be directly implemented in a purely functional language. The main difference between an arbitrary data structure and a purely functional one is that the latter is (strongly) immutable. This restriction ensures the data structure possesses the advantages of immutable objects: (full) persistency, quick copy of objects, and thread safety. Efficient purely functional data structures may require the use of lazy evaluation and memoization.
Generalized algebraic data typeIn functional programming, a generalized algebraic data type (GADT, also first-class phantom type, guarded recursive datatype, or equality-qualified type) is a generalization of parametric algebraic data types. In a GADT, the product constructors (called data constructors in Haskell) can provide an explicit instantiation of the ADT as the type instantiation of their return value. This allows defining functions with a more advanced type behaviour.