Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the last decade, Ultra High Performance Fibre Reinforced cement-based Composites (UHPFRC) have been increasingly implemented for rehabilitation and strengthening purposes, rendering outstanding results. The ease of application, along with their superior ...
Bones generate electricity under pressure, and this electromechanical behavior is thought to be essential for bone’s self-repair and remodeling properties. The origin of this response is attributed to the piezoelectricity of collagen, which is the main str ...
The aim of this work is to investigate the influence of interfacial chemistry on the properties of fluoropolymer composites, independent of effects derived from changes in morphology, in particular particle dispersion state. A comparative study of solvent ...
The characteristic functionality of ferroelectric materials is due to the symmetry of their crystalline structure. As such, ferroelectrics lend themselves to design approaches that manipulate this structural symmetry by introducing extrinsic strain. Using ...
Long-range ordering of dipoles is a key microscopic signature of ferroelectrics. These ordered dipoles form ferroelectric domains, which can be reoriented by electric fields. Relaxor ferroelectrics are a type of ferroelectric where the longrange ordering o ...
The growth speed of (hkl) faces in the vapour phase, the absolute structure obtained by X-ray crystallography, and the value and the sign of the pyroelectric coefficient of meta-nitroaniline (mNA) were analysed in detail. The in situ observation of morpho ...
Dynamics of domain walls are among the main features that control strain mechanisms in ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroe ...
Piezoelectric ceramics generate strain through the intrinsic piezoelectric effect, the motion of ferroelectric domain walls, or through field-induced phase transitions. The enhanced piezoelectric properties observed in morphotropic solid solutions arise fr ...
Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O-3 [PZT] ceramics. The origin of the donor-dopant effects is not entirely clear. (Pb,Ba)ZrO ...
Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain ...