**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Cristiano Ciuti

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (42)

Related research domains (27)

Polariton

In physics, polaritons pəˈlærᵻtɒnz,_poʊ- are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation.

Quantum well

A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy a planar region. The effects of quantum confinement take place when the quantum well thickness becomes comparable to the de Broglie wavelength of the carriers (generally electrons and holes), leading to energy levels called "energy subbands", i.e.

Exciton

An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The exciton is regarded as an elementary excitation of condensed matter that can transport energy without transporting net electric charge. An exciton can form when a material absorbs a photon of higher energy than its bandgap. This excites an electron from the valence band into the conduction band.

Decay of a particle into more particles is a ubiquitous phenomenon to interacting quantum systems, taking place in colliders, nuclear reactors or solids. In a nonlinear medium, even a single photon would decay by down-converting (splitting) into lower-frequency photons with the same total energy1, at a rate given by Fermi's golden rule. However, the energy-conservation condition cannot be matched precisely if the medium is finite and only supports quantized modes. In this case, the fate of the photon becomes the long-standing question of many-body localization, originally formulated as a gedanken experiment for the lifetime of a single Fermi-liquid quasiparticle confined to a quantum dot(2). Here we implement such an experiment using a superconducting multimode cavity, the nonlinearity of which was tailored to strongly violate the photon-number conservation. The resulting interaction attempts to convert a single photon excitation into a shower of low-energy photons but fails owing to the many-body localization mechanism, which manifests as a striking spectral fine structure of multiparticle resonances at the standing-wave-mode frequencies of the cavity. Each resonance was identified as a many-body state of radiation composed of photons from a broad frequency range and not obeying Fermi's golden rule theory. Our result introduces a new platform to explore the fundamentals of many-body localization without having to control many atoms or qubits(3-9).

Vincenzo Savona, Fabrizio Minganti, Riccardo Rota, Cristiano Ciuti

We study an array of coupled optical cavities in the presence of two-photon driving and dissipation. The system displays a critical behavior similar to that of a quantum Ising model at finite temperature. Using the corner-space renormalization method, we compute the steady-state properties of finite lattices of varying size, both in one and two dimensions. From a finite-size scaling of the average of the photon number parity, we highlight the emergence of a critical point in regimes of small dissipations, belonging to the quantum Ising universality class. For increasing photon loss rates, a departure from this universal behavior signals the onset of a quantum critical regime, where classical fluctuations induced by losses compete with long-range quantum correlations.