**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Jean-Pascal Théodor Pfister

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related publications (12)

Loading

Loading

Loading

People doing similar research (107)

Related research domains (13)

Courses taught by this person

Spike-timing-dependent plasticity

Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relati

Synaptic plasticity

In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be repres

Excitatory postsynaptic potential

In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of

No results

Related units (2)

, ,

Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock-Cooper-Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing-dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.

2011Michael Herzog, Maya Anna Jastrzebowska, Mattew Pachai, Jean-Pascal Théodor Pfister

Author summary How do humans make prediction when the critical factor that influences the quality of the prediction is hidden? Here, we address this question by conducting a simple psychophysical experiment in which participants had to extrapolate a parabola with an unknown quadratic parameter. We show that in this task, humans perform in a manner consistent with the mathematically optimal model, i.e., Bayesian regression. Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes' rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take parameter uncertainty into account in a regression task. Participants extrapolated a parabola from a limited number of noisy points, shown on a computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We tested whether human observers take full advantage of the given information, including the likelihood of the quadratic parameter value given the observed points and the quadratic parameter's prior distribution. We compared human performance with Bayesian regression, which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which are simpler to compute. Our results show that, under our specific experimental conditions, humans behave in a way that is consistent with Bayesian regression. Moreover, our results support the hypothesis that humans generate responses in a manner consistent with probability matching rather than Bayesian decision theory.

2020Johanni Michael Brea, Wulfram Gerstner, Jean-Pascal Théodor Pfister

The idea that the brain functions so as to minimize certain costs pervades theoretical neuroscience. Because a cost function by itself does not predict how the brain finds its minima, additional assumptions about the optimization method need to be made to predict the dynamics of physiological quantities. In this context, steepest descent (also called gradient descent) is often suggested as an algorithmic principle of optimization potentially implemented by the brain. In practice, researchers often consider the vector of partial derivatives as the gradient. However, the definition of the gradient and the notion of a steepest direction depend on the choice of a metric. Because the choice of the metric involves a large number of degrees of freedom, the predictive power of models that are based on gradient descent must be called into question, unless there are strong constraints on the choice of the metric. Here, we provide a didactic review of the mathematics of gradient descent, illustrate common pitfalls of using gradient descent as a principle of brain function with examples from the literature, and propose ways forward to constrain the metric.

2020