Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The EPFL water vapor and temperature scanning solar blind Raman lidar is a research tool developed for atmospheric boundary layer studies. The lidar has raw spatial and temporal resolutions of 1.25 meters and 1 second respectively and offers a new vision o ...
EPFL2010
, , , ,
The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured ...
American Geophysical Union2013
, , , ,
The flux of water vapor due to advection is measured using high-resolution Raman lidar that was orientated horizontally across a land-lake transition. At the same time, a full surface energy balance is performed to assess the impact of scalar advection on ...
American Meteorological Society2013
, , , , , , ,
A new multi-telescope scanning Raman lidar designed to measure the water vapor mixing ratio in the atmospheric boundary layer for a complete diurnal cycle with high resolution spatial (1.25 m) and temporal (1 s) resolutions is presented. The high resolutio ...
Taylor’s frozen turbulence hypothesis is the central assumption invoked in most experiments designed to investigate turbulence physics with time resolving sensors. It is also frequently used in theoretical discussions when linking Lagrangian to Eulerian fl ...