Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a model that learns the influence of interacting Markov chains within a team. The proposed model is a dynamic Bayesian network (DBN) with a two-level structure: individual-level and group-level. Individual level models actions of each player, an ...
We present a model that learns the influence of interacting Markov chains within a team. The proposed model is a dynamic Bayesian network (DBN) with a two-level structure: individual-level and group-level. Individual level models actions of each player, an ...
This paper present a principled SVM based speaker verification system. We propose a new framework and a new sequence kernel that can make use of any Mercer kernel at the frame level. An extension of the sequence kernel based on the Max operator is also pro ...
In this paper we present a text independent on-line writer identification system based on Gaussian Mixture Models (GMMs). This system has been developed in the context of research on Smart Meeting Rooms. The GMMs in our system are trained using two sets of ...
Ensemble algorithms can improve the performance of a given learning algorithm through the combination of multiple base classifiers into an ensemble. In this paper we attempt to train and combine the base classifiers using an adaptive policy. This policy is ...
In this paper, we present initial results towards boosting posterior based speech recognition systems by estimating more informative posteriors using multiple streams of features and taking into account acoustic context (e.g., as available in the whole utt ...
In this paper, we show that the hinge loss can be interpreted as the neg-log-likelihood of a semi-parametric model of posterior probabilities. From this point of view, SVMs represent the parametric component of a semi-parametric model fitted by a maximum a ...
In this paper, we show that the hinge loss can be interpreted as the neg-log-likelihood of a semi-parametric model of posterior probabilities. From this point of view, SVMs represent the parametric component of a semi-parametric model fitted by a maximum a ...
Although non-parametric tests have already been proposed for that purpose, statistical significance tests for non-standard measures (different from the classification error) are less often used in the literature. This paper is an attempt at empirically ver ...
Although non-parametric tests have already been proposed for that purpose, statistical significance tests for non-standard measures (different from the classification error) are less often used in the literature. This paper is an attempt at empirically ver ...