**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Ira Nagel

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related research domains (18)

Emulator

In computing, an emulator is hardware or software that enables one computer system (called the host) to behave like another computer system (called the guest). An emulator typically enables the hos

Analog computer

An analog computer or analogue computer is a type of computer that uses the continuous variation aspect of physical phenomena such as electrical, mechanical, or hydraulic quantities (analog signals

Application-specific integrated circuit

An application-specific integrated circuit (ASIC ˈeɪsɪk) is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to

People doing similar research (119)

Related publications (19)

Courses taught by this person

No results

Loading

Loading

Loading

Related units (3)

Power system dynamic simulators can be classified according to multiple criteria, including speed, precision, cost and modularity (topology, characteristics and model). Existing simulators are based on time-consuming numeric algorithms, which provide very precise results. But the evolution of the power grid constantly changes the requirements for simulators. In fact, power consumption is steadily increasing; therefore, the power system is always operating closer to its limits. Moreover, focus is put on decentralized and stochastic green energy sources, leading to a much more complex and less predictable power system. In order to guarantee security of supply under these conditions, real-time control and online security assessment are of the utmost importance. The main requirement for power system simulators in this context thus becomes the simulation time. The simulator has to be able to reproduce power system phenomena much faster than their real-time duration. An effective way to accelerate computation time of power system stability simulators is based on analog emulation of the power system grid. The idea is to avoid the heavy, time-consuming numerical matrix calculations of the grid by using an instantaneous analog Kirchhoff grid, with which computation becomes intrinsically parallel and the simulation time independent of the power system topology size. An overview of the power system computation history and the evolution of microelectronics highlights that the renaissance of dedicated analog computation is justified. Modern VLSI technologies can overcome the drawbacks which caused the disappearance of analog computation units in the 1960s. This work addresses therefore the development of a power system emulation approach from its theoretical principles to the behavioral design and the microelectronic implementation of a first demonstrator. The approach used in this research is called AC emulation approach and is based on a one-to-one mapping of components of the real power system (generator, load and transmission line) by emulating their behavior on a CMOS microelectronic integrated circuit (ASIC). The signals propagating on the emulated grid are the shrunk and downscaled current and voltage waves of the real power system. The uniqueness of this emulation approach is that frequency dependence of the signals is preserved. Therefore, the range of phenomena that can be emulated with an AC emulator depends only on the implemented models. Within the framework of this thesis, we restrict our developments to transient stability analysis, as our main focus is put on emulation speed. v We provide behavioral AC emulation models for the three main power system components. Thereby, special attention is paid to the generator model, which is shown to introduce a systematic error. This error is analyzed and reduced by model adaptation. Behavioral simulation results validate the developed models. Moreover, we suggest custom programmable analog building blocks for the implementation of the proposed behavioral models. During their design, application specific requirements, as well as imperfections, calibration, mismatch and process-variation aspects, are taken into account. In particular, the design of the tunable floating inductance used in all three AC emulation models is discussed in detail. In fact, major design challenges have to be addressed in order to achieve an inductance suitable for our application. Finally, a first AC emulation demonstrator is presented. A benchmark using a fixed two- machine topology has been implemented using a 0.35μm 3.3V CMOS technology. The characteristics of the emulated components (i.e. generators and transmission lines) are reprogrammable, allowing short circuits to be emulated at different distances from the generator. The emulated phenomena are shown to be 10′000 times faster than real time, therefore proving the high-speed capabilities of AC emulation.

Laurent Fabre, Maher Kayal, Theodoros Kyriakidis, Guillaume Olivier Lanz, Ira Nagel, Denis Sallin

This paper presents an innovative 3D hardware architecture for power system dynamic and transient stability. Based on an intrinsic parallel architecture by means of mixedsignal circuits (analog and digital) it overcomes the speed of numerical simulators for given models. This approach does not competing the accuracy and model complexity of the high performance numerical simulators. It intends to complement them with the advantage of speed, low-cost, portability and autonomous functions. The presented architecture provides an ultra-high speed platform by means of emulation principle. The proof of concept is an array of 4x24 nodes reconfigurable platform. Hardware details and comparisons with a reference digital simulator are given.

2013Laurent Fabre, Maher Kayal, Theodoros Kyriakidis, Guillaume Olivier Lanz, Ira Nagel, Denis Sallin

This paper presents an ultra-high speed hardware platform dedicated to power system dynamic (small signal) and transient (large signal) stability. It is based on an intrinsic parallel architecture which contains hybrid mixed-signal (analog and digital) circuits. For a given model, this architecture overcomes the speed of the numerical simulators by means of the so-called emulation approach. Indeed, the emulation speed does not depend on the power system size. This approach is nevertheless not competing against high-performance numerical simulators in term of accuracy and model complexity. It targets to complement the numerical simulators with the advantage of speed, portability, low cost and autonomous functioning. The proof of concept is a flexible and modular 96-node hardware platform. It is based on a reconfigurable array of power system buses called Field Programmable Power Network System (FPPNS). Details on this hardware are given. Two benchmark topologies with, respectively, 17 nodes and 57 nodes are provided. Comparisons with a digital simulator are done in terms of speed and accuracy. The calibration of the system is explained and different applications are proposed and discussed. The promising results of this hardware platform show that the design of a fully integrated solution containing hundreds of power system buses can be achieved in order to provide a low cost solution.