This paper considers numerical simulations of fluid-structure interaction (FSI) problems in hemodynamics for idealized geometries of healthy cerebral arteries modeled by both nonlinear isotropic and anisotropic material constitutive laws. In particular, it ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
In this paper, we propose a semi-implicit approach for the time discretization of the Navier–Stokes equations with Variational Multiscale-Large Eddy Simulation turbulence modeling (VMS-LES). For the spatial approximation of the problem, we use the Finite E ...
We consider goal-oriented a posteriori error estimators for the evaluation of the errors on quantities of interest associated with the solution of geometrically nonlinear curved elastic rods. For the numerical solution of these nonlinear one-dimensional pr ...
Parametrized systems of Differential Algebraic Equations (DAEs) stand at the base of several mathematical models in Microelectronics, Computational Fluid Dynamics and other Engineering fields. Since the dimension of these systems can be huge, high computat ...
In this paper, we consider the numerical approximation of high order Partial Differential Equations (PDEs) by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method, for which global smooth basis functions with degree of c ...
We consider a phase field model for the formulation and solution of topology optimization problems in the minimum compliance case. In this model, the optimal topology is obtained as the steady state of the phase transition described by the generalized Cahn ...