**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Riccardo Rattazzi

Biography

Riccardo Rattazzi was born in Novara (Italy) in 1964. He studied physics at the University of Pisa, where he received the Laurea cum laude in 1987, and at the Scuola Normale Superiore where he received the Diploma in Scienze and carried out graduate research in theoretical physics. After having been a post-doctoral research associate at the Lawrence Berkeley Laboratory, at Rutgers University and at CERN, in 1998 Riccardo obtained a permanent research position at the Istituto Nazionale di Fisica Nucleare in Pisa. From 2001 to 2006 he was a staff member at the Theory Division of CERN. In 2006 he was appointed professor of physics at EPFL.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

People doing similar research (29)

Courses taught by this person (3)

PHYS-431: Quantum field theory I

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.

PHYS-432: Quantum field theory II

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.

PHYS-702: Advanced Quantum Field Theory

The course builds on the two previous courses on the subject. The main subject is the study of quantum field theories at the loop level. The course introduces the concept of loop divergences and renormalization. Non abelian gauge theories are also discussed in depth.

Related research domains (91)

Related publications (101)

Supersymmetry

In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmet

Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in

Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] num

Loading

Loading

Loading

Related units (4)

Gil Badel, Alexander Monin, Riccardo Rattazzi

The Large Charge sector of Conformal Field Theory (CFT) can generically be described through a semiclassical expansion around a superfluid background. In this work, focussing on U(1) invariant Wilson-Fisher fixed points, we study the spectrum of spinning large charge operators. For sufficiently low spin these correspond to the phonon excitations of the superfluid state. We discuss the organization of these states into conformal multiplets and the form of the corresponding composite operators in the free field theory limit. The latter entails a mapping, built order-by-order in the inverse charge n(-1), between the Fock space of vacuum fluctuations and the Fock space of fluctuations around the superfluid state. We discuss the limitations of the semiclassical method, and find that the phonon description breaks down for spins of order n(1/2) while the computation of observables is valid up to spins of order n. Finally, we apply the semiclassical method to compute some conformal 3-point and 4-point functions, and analyze the conformal block decomposition of the latter with our knowledge of the operator spectrum.

Siyu Chen, Alfredo Glioti, Riccardo Rattazzi, Lorenzo Ricci, Andrea Wulzer

We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z' new physics scenarios at future muon colliders.

Gabriel Francisco Cuomo, Angelo Esposito, Alexander Monin, Riccardo Rattazzi

At finite density, the spontaneous breakdown of an internal non-Abelian symmetry dictates, along with gapless modes, modes whose gap is fixed by the algebra and proportional to the chemical potential: the gapped Goldstones. Generically the gap of these states is comparable to that of other non-universal excitations or to the energy scale where the dynamics is strongly coupled. This makes it non-straightforward to derive a universal effective field theory (EFT) description realizing all the symmetries. Focusing on the illustrative example of a fully broken SU(2) group, we demonstrate that such an EFT can be constructed by carving out around the Goldstones, gapless and gapped, at small 3-momentum. The rules governing the EFT, where the gapless Goldstones are soft while the gapped ones are slow, are those of standard nonrelativistic EFTs, like for instance nonrelativistic QED. In particular, the EFT Lagrangian formally preserves gapped Goldstone number, and processes where such number is not conserved are described inclusively by allowing for imaginary parts in the Wilson coefficients. Thus, while the symmetry is manifestly realized in the EFT, unitarity is not. We comment on the application of our construction to the study of the large charge sector of conformal field theories with non-Abelian symmetries.