**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Seyed Hamed Hassani

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related publications (35)

Related research domains (24)

Polar code (coding theory)

In information theory, a polar code is a linear block error-correcting code. The code construction is based on a multiple recursive concatenation of a short kernel code which transforms the physical

Reed–Muller code

Reed–Muller codes are error-correcting codes that are used in wireless communications applications, particularly in deep-space communication. Moreover, the proposed 5G standard relies on the closely r

Binary erasure channel

In coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit corre

Courses taught by this person

No results

Loading

Loading

Loading

People doing similar research (101)

Related units (5)

Seyed Hamed Hassani, Marco Mondelli, Rüdiger Urbanke

Consider the problem of constructing a polar code of block length N for a given transmission channel W. Previous approaches require one to compute the reliability of the N synthetic channels and then use only those that are sufficiently reliable. However, we know from two independent works by Schurch and by Bardet et al. that the synthetic channels are partially ordered with respect to degradation. Hence, it is natural to ask whether the partial order can be exploited to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order, we can construct a polar code by computing the reliability of roughly a fraction 1/log(3/2) N of the synthetic channels. In particular, we prove that N/log(3/2) N is a lower bound on the number of synthetic channels to be considered and such a bound is tight up to a multiplicative factor log log N. This set of roughly N/log(3/2) N synthetic channels is universal, in the sense that it allows one to construct polar codes for any W, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists of reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general, and it can be used to further improve the complexity of the construction problem, in case a refined partial order on the synthetic channels of polar codes is discovered.

Seyed Hamed Hassani, Marco Mondelli, Rüdiger Urbanke

We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner-Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner-Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds.

2019Volkan Cevher, Seyed Hamed Hassani, Fabian Ricardo Latorre Gomez

One prominent approach toward resolving the adversarial vulnerability of deep neural networks is the two-player zero-sum paradigm of adversarial training, in which predictors are trained against adversarially-chosen perturbations of data. Despite the promise of this approach, algorithms based on this paradigm have not engendered sufficient levels of robustness, and suffer from pathological behavior like robust overfitting. To understand this shortcoming, we first show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on the robustness of trained classifiers. The identification of this pitfall informs a novel non-zero-sum bilevel formulation of adversarial training, wherein each player optimizes a different objective function. Our formulation naturally yields a simple algorithmic framework that matches and in some cases outperforms state-of-the-art attacks, attains comparable levels of robustness to standard adversarial training algorithms, and does not suffer from robust overfitting.

2023