**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Mikaël Mayer

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Courses taught by this person

No results

Related research domains (3)

Programming language

A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer

Algorithm

In mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algo

Natural language processing

Natural language processing (NLP) is an interdisciplinary subfield of linguistics and computer science. It is primarily concerned with processing natural language datasets, such as text corpora or sp

Related publications (18)

Loading

Loading

Loading

People doing similar research (131)

Related units (3)

Jad Hamza, Viktor Kuncak, Mikaël Mayer

Synthesis from examples enables non-expert users to generate programs by specifying examples of their behavior. A domain-specific form of such synthesis has been recently deployed in a widely used spreadsheet software product. In this paper we contribute to foundations of such techniques and present a complete algorithm for synthesis of a class of recursive functions defined by structural recursion over a given algebraic data type definition. The functions we consider map an algebraic data type to a string; they are useful for, e.g., pretty printing and serialization of programs and data. We formalize our problem as learning deterministic sequential top-down tree-to-string transducers with a single state (1STS). The first problem we consider is learning a tree-to-string transducer from any set of input/output examples provided by the user. We show that, given a set of input/output examples, checking whether there exists a 1STS consistent with these examples is NP-complete in general. In contrast, the problem can be solved in polynomial time under a (practically useful) closure condition that each subtree of a tree in the input/output example set is also part of the input/output examples. Because coming up with relevant input/output examples may be difficult for the user while creating hard constraint problems for the synthesizer, we also study a more automated active learning scenario in which the algorithm chooses the inputs for which the user provides the outputs. Our algorithm asks a worst-case linear number of queries as a function of the size of the algebraic data type definition to determine a unique transducer. To construct our algorithms we present two new results on formal languages. First, we define a class of word equations, called sequential word equations, for which we prove that satisfiability can be solved in deterministic polynomial time. This is in contrast to the general word equations for which the best known complexity upper bound is in linear space. Second, we close a long-standing open problem about the asymptotic size of test sets for context-free languages. A test set of a language of words L is a subset T of L such that any two word homomorphisms equivalent on T are also equivalent on L. We prove that it is possible to build test sets of cubic size for context-free languages, matching for the first time the lower bound found 20 years ago.

2017As of today, programming has never been so accessible. Yet, it remains a challenge for end-users: students, non-technical employees, experts in their domains outside of computer science, and so on. With its forecast potential for solving problems by only observing inputs and outputs, programming-by-example was supposed to alleviate complex tasks requiring programming for end-users. The initial ideas of macro-based editors paved the way to subsequent practical solutions, such as spreadsheet transformations from examples. Finding the right program is the core of the programming-by-example systems. However, users find it difficult to trust such generated programs. In this thesis, we contribute to proving that some forms of interaction alleviate, by having users provide examples, the problem of finding correct and reliable programs. We first report on two experiments that enable us to conjecture what kind of interaction brings benefits to programming-by-example. First, we present a new kind of game engine, Pong Designer. In this game engine, by using their finger, users program rules on the fly, by modifying the game state. We analyze its potential, and its eventual downsides that have probably prevented its wide adoption. Second, we present StriSynth, an interactive command-line tool that uses programming-by-example to transform string and collections. The resulting programs can also rename or otherwise manage files. We obtained the result that confirms that many users preferred StriSynth over usual programming languages, but would appreciate to have both. We then report on two new exciting experiments with verified results, using two forms of interaction truly benefiting programming-by-example. Third, on top of a programmingby- example-based engine for extracting structured data out of text files, in this thesis we study two interaction models implemented in a tool named FlashProg: a view of the program with notification about ambiguities, and the asking of clarification questions. In this thesis, we prove that these two interaction models enable users to perform tasks with less errors and to be more confident with the results. Last, for learning recursive tree-to-string functions (e.g., pretty-printers), in this thesis we prove that questioning breaks down the learning complexity from a cubic to a linear number of questions, in practice making programming-by-example even more accessible than regular programming. The implementation, named Prosy, could be easily added to integrated development environments.

Dans cette présentation couvrant mon travail de thèse effectué entre 2012 et 2017, je couvre - Une introduction à la programmation par l'exemple - Pong Designer: Programmer des jeux android avec le doigt - StriSynth: Renommer des millions de fichiers sans programmer - FlashProg: Extraire des tables d'un texte avec la souris - Prosy: Comment poser des questions précises. - Les conclusions de ma thèse.

2017