Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the problem of proving termination of open, higher-order programs with recursive functions and datatypes. We identify a new point in the design space of solutions, with an appealing trade-off between simplicity of specification, modularity, and am ...
Procedures for first-order logic with equality are used in many modern theorem provers and solvers, yet procedure termination in case of interesting sub-classes of satisfiable formulas remains a challenging problem. We present an instantiation-based semi-d ...
We present a verification procedure for pure higher-order functional Scala programs with parametric types. We show that our procedure is sound for proofs, as well as sound and complete for counter-examples. The procedure reduces the analysis of higher-orde ...
In this thesis, we present Stainless, a verification system for an expressive subset of the Scala language.
Our system is based on a dependently-typed language and an algorithmic type checking procedure
which ensures total correctness. We rely on SMT solve ...
We present the foundations of a verifier for higher-order functional programs with generics and recursive algebraic data types. Our ver- ifier supports finding sound proofs and counterexamples even in the presence of certain quantified invariants and recur ...
We start by describing how higher-order function support can be added to a (first order) functional verification framework. We cover both the higher-order construct management and framework extensions necessary for constraint specification. Next, we outlin ...