Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Stabilized explicit methods are particularly efficient, for large systems of stiff stochastic differential equations (SDEs) due to their extended stability domain. However, they lose their efficiency when a severe stiffness is induced by very few "fast" de ...
Mixed-precision algorithms combine low-and high-precision computations in order to benefit from the performance gains of reduced-precision without sacrificing accuracy. In this work, we design mixed-precision Runge-Kutta-Chebyshev (RKC) methods, where high ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
,
Stabilized Runge–Kutta (aka Chebyshev) methods are especially efficient for the numerical solution of large systems of stiff differential equations because they are fully explicit; hence, they are inherently parallel and easily accommodate nonlinearity. Fo ...
MATHICSE2020
,
We introduce a local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations. The proposed method is based on a coarse grid and iteratively improves the solution's accuracy by solving local elliptic problems in refined subdomains ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
Mathematical models involving multiple scales are essential for the description of physical systems. In particular, these models are important for the simulation of time-dependent phenomena, such as the heat flow, where the Laplacian contains mixed and ind ...
EPFL2020
A local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations is introduced. Departing from classical adaptive algorithms, the proposed method is based on a coarse grid and iteratively improves the accuracy of the solution by s ...
MATHICSE2020
,
Stabilized Runge???Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge???Kutta me ...
A local weighted discontinuous Galerkin gradient discretization method for solving elliptic equations is introduced. The local scheme is based on a coarse grid and successively improves the solution solving a sequence of local elliptic problems in high gra ...
Stabilized explicit methods are particularly ecient for large systems of sti stochastic dif- ferential equations (SDEs) due to their extended stability domain. However, they loose their eciency when a severe stiness is induced by very few fast degrees of f ...
A local weighted discontinuous Galerkin gradient discretization method for solving ellipticequations is introduced. The local scheme is based on a coarse grid and successively improvesthe solution solving a sequence of local elliptic problems in high gradi ...