Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Data processing systems offer an ever increasing degree of parallelism on the levels of cores, CPUs, and processing nodes. Query optimization must exploit high degrees of parallelism in order not to gradually become the bottleneck of query evaluation. We s ...
Query plans offer diverse tradeoffs between conflicting cost metrics such as execution time, energy consumption, or execution fees in a multi-objective scenario. It is convenient for users to choose the desired cost tradeoff in an interactive process, dyna ...
2015
,
We propose a generalization of the classical database query optimization problem: multi-objective parametric query optimization (MPQ). MPQ compares alternative processing plans according to multiple execution cost metrics. It also models missing pieces of ...
Association for Computing Machinery2016
The goal of query optimization is to map a declarative query (describing data to generate) to a query plan (describing how to generate the data) with optimal execution cost. Query optimization is required to support declarative query interfaces. It is a co ...
EPFL2016
,
Classical query optimization compares query plans according to one cost metric and associates each plan with a constant cost value. In this paper, we introduce the Multi-Objective Parametric Query Optimization (MPQ) problem where query plans are compared a ...
Assoc Computing Machinery2015
,
The goal of multi-objective query optimization (MOQO) is to find query plans that realize a good compromise between conflicting objectives such as minimizing execution time and minimizing monetary fees in a Cloud scenario. A previously proposed exhaustive ...
The D-Wave adiabatic quantum annealer solves hard combinatorial optimization problems leveraging quantum physics. The newest version features over 1000 qubits and was released in August 2015. We were given access to such a machine, currently hosted at NASA ...
The goal of multi-objective quality-driven service selection (QDSS) is to find service selections for a workflow whose quality-of-service (QoS) values are Pareto-optimal. We consider multiple QoS attributes such as response time, cost, and reliability. A s ...
Institute of Electrical and Electronics Engineers2014
The goal of multi-objective query optimization (MOQO) is to find query plans that realize a good compromise between conicting objectives such as minimizing execution time and minimizing monetary fees in a Cloud scenario. A previously proposed exhaustive MO ...
Participatory sensing (PS) is becoming a popular data acquisition means for interesting emerging applications. However, as data queries from these applications increase, the sustainability of this platform for multiple concurrent applications is at stake. ...