Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The optimization of k-space sampling for nonlinear sparse MRI reconstruction is phrased as Bayesian experimental design problem. Bayesian inference is approximated by a novel relaxation to standard signal processing primitives, resulting in an efficient op ...
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher- ...
Learning about users’ utilities from preference, discrete choice or implicit feedback data is of integral importance in e-commerce, targeted advertising and web search. Due to the sparsity and diffuse nature of data, Bayesian approaches hold much promise, ...
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low norm in a reproducing ...
Institute of Electrical and Electronics Engineers2012
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher- ...
Probabilistic matrix factorization methods aim to extract meaningful correlation structure from an incomplete data matrix by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to such l ...
This work investigates the ability of free induction decay (FID) navigators to provide information on rigid head motion. FID navigators were incorporated in a gradient-echo sequence. In parallel, optical tracking data was acquired and served as the ground ...
Latent Gaussian models (LGMs) are widely used in statistics and machine learning. Bayesian inference in non-conjugate LGMs is difficult due to intractable integrals in- volving the Gaussian prior and non-conjugate likelihoods. Algorithms based on variation ...
The Poisson likelihood with rectified linear function as non-linearity is a physically plausible model to discribe the stochastic arrival process of photons or other particles at a detector. At low emission rates the discrete nature of this process leads t ...
Natural image statistics exhibit hierarchical dependencies across multiple scales. Representing such prior knowledge in non-factorial latent tree models can boost performance of image denoising, inpainting, deconvolution or reconstruction substantially, be ...