Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We are living in the era of "Big Data", an era characterized by a voluminous amount of available data. Such amount is mainly due to the continuing advances in the computational capabilities for capturing, storing, transmitting and processing data. However, ...
We consider the estimation of a signal from the knowledge of its noisy linear random Gaussian projections. A few examples where this problem is relevant are compressed sensing, sparse superposition codes, and code division multiple access. There has been a ...
In this work, we formulate the fixed-length distribution matching as a Bayesian inference problem. Our proposed solution is inspired from the compressed sensing paradigm and the sparse superposition (SS) codes. First, we introduce sparsity in the binary so ...
Sparse superposition codes, or sparse regression codes, constitute a new class of codes, which was first introduced for communication over the additive white Gaussian noise (AWGN) channel. It has been shown that such codes are capacity-achieving over the A ...