Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Let B-M : C x C -> C be a bilinear form B-M(p, q) - p(T)Mq, with an invertible matrix M is an element of C-2x2. We prove that any finite set S contained in an irreducible algebraic curve C of degree d in C determines Omega(d)(vertical bar S vertical bar(4/ ...
We define the bisector energy E(P) of a set P in R-2 to be the number of quadruples (a, b, c, d) is an element of P-4 such that a, b determine the same perpendicular bisector as c, d. Equivalently, E(P) is the number of isosceles trapezoids determined by P ...
An ordinary circle of a set P of n points in the plane is defined as a circle that contains exactly three points of P. We show that if P is not contained in a line or a circle, then P spans at least ordinary circles. Moreover, we determine the exact minimu ...
Let F 2 C[x; y; z] be a constant-degree polynomial, and let A; B; C subset of C be finite sets of size n. We show that F vanishes on at most O(n(11/6))points of the Cartesian product A X B X C, unless F has a special group-related form. This improves a the ...
We study the structure of planar point sets that determine a small number of distinct distances. Specifically, we show that if a set of n points determines o(n) distinct distances, then no line contains Omega(n (7/8)) points of and no circle contains Omega ...
We prove a lower bound on the number of ordinary conics determined by a finite point set in R-2. An ordinary conic for S subset of R-2 is a conic that is determined by five points of S and contains no other points of S. Wiseman and Wilson proved the Sylves ...
Siam Publications2016
Many problems in combinatorial geometry can be formulated in terms of curves or surfaces containing many points of a cartesian product. In 2000, Elekes and Rónyai proved that if the graph of a polynomial f(x, y) contains cn2 points of an n × n × n cartesia ...
Elsevier2013
,
Let S be a set of n points in R-2 contained in an algebraic curve C of degree d. We prove that the number of distinct distances determined by S is at least c(d)n(4/3), unless C contains a line or a circle. We also prove the lower bound c(d)' min{m(2/3)n(2/ ...
We show that for m points and n lines in R-2, the number of distinct distances between the points and the lines is Omega(m(1/5)n(3/5)), as long as m(1/2)