Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Objectives Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans can eff ...
3D reconstruction of pulmonary segments plays an important role in surgical treatment planning of lung cancer, which facilitates preservation of pulmonary function and helps ensure low recurrence rates. However, automatic reconstruction of pulmonary segmen ...
Pulmonary nodules and masses are crucial imaging features in lung cancer screening that require careful management in clinical diagnosis. Despite the success of deep learning-based medical image segmentation, the robust performance on various sizes of lesi ...
The high computational costs of deep convolutional neural networks hinder their deployment in real-world applications, including pulmonary nodule detection from CT scans where large 3D image sizes amplify the issue. This paper presents a novel 3D method to ...
Convolutional neural networks (CNNs) have been demonstrated to be highly effective in the field of pulmonary nodule detection. However, existing CNN based pulmonary nodule detection methods lack the ability to capture long-range dependencies, which is vita ...