**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Lorenzo Vitale

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Courses taught by this person

No results

Related research domains (5)

Quantum field theory

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to cons

Renormalization group

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In p

Renormalization

Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calcu

Related publications (6)

Loading

Loading

Loading

People doing similar research (30)

Related units (2)

We defend the Fock-space Hamiltonian truncation method, which allows us to calculate numerically the spectrum of strongly coupled quantum field theories, by putting them in a finite volume and imposing a UV cutoff. The accuracy of the method is improved via an analytic renormalization procedure inspired by the usual effective field theory. As an application, we study the two-dimensional.4 theory for a wide range of couplings. The theory exhibits a quantum phase transition between the symmetry-preserving and symmetry-breaking phases. We extract quantitative predictions for the spectrum and the critical coupling and make contact with previous results from the literature. Future directions to further improve the accuracy of the method and enlarge its scope of applications are outlined.

This thesis explores two aspects of the renormalization group (RG) in quantum field theory (QFT). In the first part we study the structure of RG flows in general Poincaré-invariant, unitary QFTs, and in particular the irreversibility properties and the relation between scale and conformal invariance. Within the formalism of the local Callan--Symanzik equation, we derive a series of results in four and six-dimensional QFTs. Specifically, in the four dimensional case we revisit and complete existing proofs of the $a$-theorem and of the equivalence between scale and conformal invariance in perturbation theory. We then present an original derivation of similar results in six-dimensional QFTs. In the second part we present the Hamiltonian Truncation method and study its applicability to the numerical solution of non-perturbative RG flows. We test the method in the Phi^4 model in two dimensions and show how it can be used to make quantitative predictions for the low-energy observables. In particular, we calculate the numerical spectrum and estimate the critical coupling at which the theory becomes conformal. We also compare our results to previous estimates. The main original ingredient of our analysis is an analytic renormalization procedure used to improve the numerical convergence. We then adapt the method in order to treat the strongly-coupled regime of the model where the Z2 symmetry is spontaneously broken. We reproduce perturbative and non-perturbative observables and compare our results with analytical predictions.

When conformal field theories (CFTs) are perturbed by marginally relevant deformations, renormalization group (RG) flows ensue that can be studied with perturbative methods, at least as long as they remain close to the original CFT. In this work we study such RG flows in the vicinity of six-dimensional unitary CFTs. Neglecting effects of scalar operators of dimension two and four, we use Weyl consistency conditions to prove the alpha-theorem in perturbation theory, and establish that scale implies conformal invariance. We identify a quantity that monotonically decreases in the flow to the infrared due to unitarity, showing that it does not agree with the one studied recently in the literature on the six-dimensional O-3 theory.