Hydrogen embrittlement (HE) is a ubiquitous and catastrophic mode of fracture in metals. Here, embrittlement is considered as an intrinsic ductile-brittle transition at the crack tip, where H at the crack tip can reduce the stress intensity K-Ic for cleava ...
Atomistic simulations are a powerful complement to experimental probes for understanding the nanoscale processes associated with the effects of hydrogen (H) on plasticity and fracture that are the underlying causes of hydrogen embrittlement (HE). Current e ...
The detrimental effects of the H on the mechanical properties of the metals are known for more than a century. One of the most important degradation mechanisms is H embrittlement (HE). In this thesis, we examined a few famous proposed mechanisms in the fie ...
Atomistic simulations of bicrystal samples containing a grain boundary are used to examine the effect of hydrogen atoms on the nucleation of intergranular cracks in Ni. Specifically, the theoretical strength is obtained by rigid separation of the two cryst ...
Hydrogen ingress into a metal is a persistent source of embrittlement. Fracture surfaces are often intergranular, suggesting favorable cleave crack growth along grain boundaries (GBs) as one driver for embrittlement. Here, atomistic simulations are used to ...
Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum- ...
The urgent need for clean energy coupled with the exceptional promise of hydrogen (H) as a clean fuel is driving development of new metals resistant to hydrogen embrittlement. Experiments on new fcc high entropy alloys present a paradox: these alloys absor ...
Hydrogen atoms have a wide variety of effects on the mechanical performance of metals, and the underlying mechanisms associated with effects on plastic flow and embrittlement remain to be discovered or validated. Here, the reduction in the plastic flow str ...