**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Jakub Tarnawski

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Courses taught by this person

Related publications (9)

No results

Loading

Loading

Loading

People doing similar research (91)

Related research domains (5)

Approximation algorithm

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable

Travelling salesman problem

The travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exa

Problem solving

Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an a

Related units (5)

In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem instances and to guide algorithms in making progress. Somewhat surprisingly, similar polyhedral techniques can be harnessed in the two seemingly disparate settings.
In the first part of the thesis we address a benchmark problem in combinatorial optimization: the asymmetric traveling salesman problem (ATSP). It consists in finding the shortest tour that visits all vertices of a given directed graph with weights on edges. Due to its NP-hardness, the theoretical study of algorithms for ATSP has focused on approximation algorithms: ones that are provably both efficient and give solutions competitive with the optimum. Specifically, a rho-approximation algorithm for ATSP is one that runs in polynomial time and always outputs a tour that is at most rho times longer than the shortest tour. Finding such an approximation algorithm with rho bounded (i.e., a constant factor) had been a long-standing open problem.
In this thesis, we give such an algorithm. Our approximation guarantee is analyzed with respect to the standard linear programming relaxation, and thus our result also confirms the conjectured constant integrality gap of that relaxation. Our techniques build upon the constant-factor approximation algorithm for the special case of node-weighted metrics due to Svensson. In particular, we give a generic reduction to structured instances that resemble but are more general than those arising from node-weighted metrics. This reduction takes advantage of a laminar family of vertex sets that arises from the linear programming relaxation.
In the second part of the thesis we address the perfect matching problem. The first polynomial-time algorithm for it, given by Edmonds in 1965, is historically associated with the introduction of the class P and our notion that

`polynomial-time'' means `

efficient''. That algorithm is sequential and deterministic. We have also known since the 1980s that the matching problem has efficient parallel algorithms if the use of randomness is allowed. Formally, it is in the class RNC, i.e., it has randomized algorithms that use polynomially many processors and run in polylogarithmic time. However, we do not know if randomness is necessary - that is, whether the matching problem is in the class NC.
In this thesis we show that the matching problem is in quasi-NC. That is, we give a deterministic parallel algorithm that runs in O(log^3 n) time on n^{O(log^2 n)} processors. The result is obtained by a derandomization of the Isolation Lemma for perfect matchings, which was introduced in the classic paper by Mulmuley, Vazirani and Vazirani to obtain an RNC algorithm. Our proof extends the framework of Fenner, Gurjar and Thierauf, who proved the analogous result in the special case of bipartite graphs. Compared to that setting, several new ingredients are needed due to the significantly more complex structure of perfect matchings in general graphs. In particular, our proof heavily relies on the laminar structure of the faces of the perfect matching polytope.Ola Nils Anders Svensson, Jakub Tarnawski

We give a constant factor approximation algorithm for the Asymmetric Traveling Salesman Problem on shortest path metrics of directed graphs with two different edge weights. For the case of unit edge weights, the first constant factor approximation was given recently by Svensson. This was accomplished by introducing an easier problem called Local-Connectivity ATSP and showing that a good solution to this problem can be used to obtain a constant factor approximation for ATSP. In this paper, we solve Local-Connectivity ATSP for two different edge weights. The solution is based on a flow decomposition theorem for solutions of the Held-Karp relaxation, which may be of independent interest.

Ola Nils Anders Svensson, Jakub Tarnawski

We give a constant-factor approximation algorithm for the asymmetric traveling salesman problem. Our approximation guarantee is analyzed with respect to the standard LP relaxation, and thus our result confirms the conjectured constant integrality gap of that relaxation. Our techniques build upon the constant-factor approximation algorithm for the special case of node-weighted metrics. Specifically, we give a generic reduction to structured instances that resemble, but are more general than, those arising from node-weighted metrics. For those instances, we then solve Local-Connectivity ATSP, a problem known to be equivalent (in terms of constant-factor approximation) to the asymmetric traveling salesman problem.