**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Damian Mateusz Straszak

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

People doing similar research

Related publications (3)

Related research domains

Courses taught by this person

No results

No results

No results

Loading

Loading

Loading

Related units (4)

Javad Ebrahimi Boroojeni, Damian Mateusz Straszak, Nisheeth Vishnoi

Several fundamental problems that arise in optimization and computer science can be cast as follows: Given vectors v(1), ..., v(m) is an element of R-d and a constraint family B subset of 2([m]), find a set S. B that maximizes the squared volume of the simplex spanned by the vectors in S. A motivating example is the ubiquitous data-summarization problem in machine learning and information retrieval where one is given a collection of feature vectors that represent data such as documents or images. The volume of a collection of vectors is used as a measure of their diversity, and partition or matroid constraints over [m] are imposed in order to ensure resource or fairness constraints. Even with a simple cardinality constraint (B = (([m])(r))), the problem becomes NP-hard and has received much attention starting with a result by Khachiyan [1] who gave an r(O(r)) approximation algorithm for this problem. Recently, Nikolov and Singh [2] presented a convex program and showed how it can be used to estimate the value of the most diverse set when there are multiple cardinality constraints (i.e., when B corresponds to a partition matroid). Their proof of the integrality gap of the convex program relied on an inequality by Gurvits [3], and was recently extended to regular matroids [4], [5]. The question of whether these estimation algorithms can be converted into the more useful approximation algorithms - that also output a set - remained open. The main contribution of this paper is to give the first approximation algorithms for both partition and regular matroids. We present novel formulations for the subdeterminant maximization problem for these matroids; this reduces them to the problem of finding a point that maximizes the absolute value of a nonconvex function over a Cartesian product of probability simplices. The technical core of our results is a new anti-concentration inequality for dependent random variables that arise from these functions which allows us to relate the optimal value of these nonconvex functions to their value at a random point. Unlike prior work on the constrained subdeterminant maximization problem, our proofs do not rely on real-stability or convexity and could be of independent interest both in algorithms and complexity where anti-concentration phenomena has recently been deployed.

Damian Mateusz Straszak, Nisheeth Vishnoi

Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most sophisticated tasks involving decision making, can be reduced to solving certain optimization problems. These advances however, bring several new challenges to the field of algorithm design. The first of them is related to the ever-growing size of instances, these optimization problems need to be solved for. In practice, this forces the algorithms for these problems to run in time linear or nearly linear in their input size. The second challenge is related to the emergence of new, harder and harder problems which need to be dealt with. These problems are in most cases considered computationally intractable because of complexity barriers such as NP completeness, or because of non-convexity. Therefore, efficiently computable relaxations for these problems are typically desired.
The material of this thesis is divided into two parts. In the first part we attempt to address the first challenge. The recent tremendous progress in developing fast algorithm for such fundamental problems as maximum flow or linear programming, demonstrate the power of continuous techniques and tools such as electrical flows, fast Laplacian solvers and interior point methods. In this thesis we study new algorithms of this type based on continuous dynamical systems inspired by the study of a slime mold Physarum polycephalum. We perform a rigorous mathematical analysis of these dynamical systems and extract from them new, fast algorithms for problems such as minimum cost flow, linear programming and basis pursuit.
In the second part of the thesis we develop new tools to approach the second challenge. Towards this, we study a very general form of discrete optimization problems and its extension to sampling and counting, capturing a host of important problems such as counting matchings in graphs, computing permanents of matrices or sampling from constrained determinantal point processes. We present a very general framework, based on polynomials, for dealing with these problems computationally. It is based, roughly, on encoding the problem structure in a multivariate polynomial and then recovering the solution by means of certain continuous relaxations. This leads to several questions on how to reason about such relaxations and how to compute them. We resolve them by relating certain analytic properties of the arising polynomials, such as the location of their roots or convexity, to the combinatorial structure of the underlying problem.
We believe that the ideas and mathematical techniques developed in this thesis are only a beginning and they will inspire more work on the use of dynamical systems and polynomials in the design of fast algorithms.