**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Nicolò Ripamonti

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related research domains (14)

Time

Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component

Model order reduction

Model order reduction (MOR) is a technique for reducing the computational complexity of mathematical models in numerical simulations. As such it is closely related to the concept of metamodeling, with

Nonlinear system

In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interes

Related publications (6)

Loading

Loading

Loading

Related units (3)

Courses taught by this person

No results

In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high-fidelity approximations of PDEs often result in a large number of degrees of freedom, the need for iterative evaluations for numerical optimizations and rapid feedback is computationally challenging.The first part of this thesis is devoted to conserving the high-dimensional equation's invariants, symmetries, and structures during the reduction process. Traditional reduction techniques are not guaranteed to yield stable reduced systems, even if the target problem is stable. In the context of fluid flows, the skew-symmetric structure of the problem entails the preservation of the kinetic energy of the system. By preserving the same structure at the level of the reduced model, we obtain enhanced stability, and accuracy and the reduced model acquires physical significance by preserving a surrogate of the energy of the original problem. Next, we focus on Hamiltonian systems, which, being driven by symmetry, are a source of great interest in the reduction community. It is well known that the breaking of these symmetries in the reduced model is accompanied by a blowup of the system energy and flow volume. In this thesis, geometric reduced models for Hamiltonian systems are further developed and combined with the dynamically orthogonal methods, addressing the poor reducibility in time of advection-dominated problems. The reduced solution is expressed as a linear combination of a finite number of modes and coincides with the symplectic projection of the high-fidelity Hamiltonian problem onto the tangent space of the approximating manifold. An error surrogate is used to monitor the approximation ability of the reduced model and make a change in the rank of the approximating system if necessary. The method is further developed through a combination of DEIM and DMD to reduce non-polynomial nonlinearities while preserving the symplectic structure of the problem and applied to the Vlasov-Poisson system.In the second part of the thesis, we consider several data-driven methods to address the poor accuracy in the under-resolved regime for Galerkin reduced models via a closure term. The closure term is developed systematically from the Mori-Zwanzig formalism by introducing projection operators on the spaces of resolved and unresolved scales, thus resulting in an additional memory integral term. The interaction between different scales turns out to be nonlocal in time and dominated by a high-dimensional orthogonal dynamics equation, which cannot be solved precisely and efficiently. Several classical methods in the field of statistical mechanics are used to approximate the memory term, exploiting the finiteness of the memory kernel support. We conclude this thesis by showing through numerical experiments how long short-term memory networks, i.e., machine learning structures characterized by feedback connections, represent a valid tool for approximating the additional memory term.

People doing similar research (115)

, , , , , , , , ,

Jan Sickmann Hesthaven, Cecilia Pagliantini, Nicolò Ripamonti

This work proposes an adaptive structure-preserving model order reduction method for finite-dimensional parametrized Hamiltonian systems modeling non-dissipative phenomena. To overcome the slowly decaying Kolmogorov width typical of transport problems, the full model is approximated on local reduced spaces that are adapted in time using dynamical low-rank approximation techniques. The reduced dynamics is prescribed by approximating the symplectic projection of the Hamiltonian vector field in the tangent space to the local reduced space. This ensures that the canonical symplectic structure of the Hamiltonian dynamics is preserved during the reduction. In addition, accurate approximations with low-rank reduced solutions are obtained by allowing the dimension of the reduced space to change during the time evolution. Whenever the quality of the reduced solution, assessed via an error indicator, is not satisfactory, the reduced basis is augmented in the parameter direction that is worst approximated by the current basis. Extensive numerical tests involving wave interactions, nonlinear transport problems, and the Vlasov equation demonstrate the superior stability properties and considerable runtime speedups of the proposed method as compared to global and traditional reduced basis approaches.

Jan Sickmann Hesthaven, Nicolò Ripamonti, Qian Wang

Closure modeling based on the Mori-Zwanzig formalism has proven effective to improve the stability and accuracy of projection-based model order reduction. However, closure models are often expensive and infeasible for complex nonlinear systems. Towards efficient model reduction of general problems, this paper presents a recurrent neural network (RNN) closure of parametric POD-Galerkin reduced-order model. Based on the short time history of the reduced-order solutions, the RNN predicts the memory integral which represents the impact of the unresolved scales on the resolved scales. A conditioned long short term memory (LSTM) network is utilized as the regression model of the memory integral, in which the POD coefficients at a number of time steps are fed into the LSTM units, and the physical/geometrical parameters are fed into the initial hidden state of the LSTM. The reduced-order model is integrated in time using an implicit-explicit (IMEX) Runge-Kutta scheme, in which the memory term is integrated explicitly and the remaining right-hand-side term is integrated implicitly to improve the computational efficiency. Numerical results demonstrate that the RNN closure can significantly improve the accuracy and efficiency of the POD-Galerkin reduced-order model of nonlinear problems. The POD-Galerkin reduced-order model with the RNN closure is also shown to be capable of making accurate predictions, well beyond the time interval of the training data.

2020