This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (4)
Please note that this is not a complete list of this person’s publications. It includes only semantically relevant works. For a full list, please refer to Infoscience.
Precipitation strengthening is one of the key strengthening strategies in many industrial alloys like aluminum alloys, nickel-based superalloys, etc. The yield strength of alloy is improved by forming precipitates in materials and employing them as obstacl ...
Strengthening by needle-shaped precipitates is critical in Al–Mg–Si alloys. Here, the strengthening is studied computationally at the peak-aged condition where precipitate shearing and Orowan looping are usually considered to have equal strengths. Pseudo-r ...
Many metal alloys are strengthened by controlling precipitation to achieve an optimal peak-aged condi-tion where the strength-limiting processes of precipitate shearing and Orowan looping are thought to be comparable. Qualitative models have long captured ...