In this thesis we present and analyze approximation algorithms for three different clustering problems. The formulations of these problems are motivated by fairness and explainability considerations, two issues that have recently received attention in the ...
An instance of colorful k-center consists of points in a metric space that are colored red or blue, along with an integer k and a coverage requirement for each color. The goal is to find the smallest radius ρ such that there exist balls of radius ρ around ...
An instance of colorful k-center consists of points in a metric space that are colored red or blue, along with an integer k and a coverage requirement for each color. The goal is to find the smallest radius rho such that there exist balls of radius rho aro ...
We study the problem of explainable clustering in the setting first formalized by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). A k-clustering is said to be explainable if it is given by a decision tree where each internal node splits data point ...