Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In active nematic liquid crystals, activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that ...
Computer simulations of experimentally comparable system sizes in soft matter often require considerable elapsed times. The use of many cores can reduce the needed time, ideally proportionally to the number of processors. In this paper a parallel computati ...
WILEY-V C H VERLAG GMBH2021
,
Collective guidance of out-of-equilibrium systems without using external fields is a challenge of paramount importance in active matter, ranging from bacterial colonies to swarms of self-propelled particles. Designing strategies to guide active matter and ...
NATURE PORTFOLIO2021
,
We present a comprehensive study of a model system of repulsive self-propelled disks in two dimensions with ferromagnetic and nematic velocity alignment interactions. We characterize the phase behavior of the system as a function of the alignment and self- ...
We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their microscopic dynamics, described by a many-body Fokker-Planck equation. The model includes both intrinsic torques ind ...
We present a hydrodynamic theory for systems of dipolar active Brownian particles which, in the regime of weak dipolar coupling, predicts the onset of motility-induced phase separation (MIPS), consistent with Brownian dynamics (BD) simulations. The hydrody ...
We provide a comprehensive quantitative analysis of localized and extended topological defects in the steady state of 2D passive and active repulsive Brownian disk systems. We show that, both in and out-of-equilibrium, the passage from the solid to the hex ...
We present a comprehensive study about the relationship between the way detailed balance is broken in non-equilibrium systems and the resulting violations of the fluctuation-dissipation theorem. Starting from stochastic dynamics with both odd and even vari ...
We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these ...
Magnetic colloids adsorbed at a fluid interface are unique model systems to understand self-assembly in confined environments, both in equilibrium and out of equilibrium, with important potential applications. In this work the pearl-chain-like self-assembl ...