**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Eva Vidlicková

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Courses taught by this person

No results

Related research domains (11)

Approximation

An approximation is anything that is intentionally similar but not exactly equal to something else.
Etymology and usage
The word approximation is derived from Latin approximatus, from prox

Tangent space

In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics

System

A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its

Related units (3)

Related publications (6)

Loading

Loading

Loading

People doing similar research (154)

, ,

We consider the Dynamical Low Rank (DLR) approximation of random parabolic equations and propose a class of fully discrete numerical schemes. Similarly to the continuous DLR approximation, our schemes are shown to satisfy a discrete variational formulation. By exploiting this property, we establish stability of our schemes: we show that our explicit and semi-implicit versions are conditionally stable under a "parabolic" type CFL condition which does not depend on the smallest singular value of the DLR solution; whereas our implicit scheme is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit scheme can be unconditionally stable if the randomness in the system is sufficiently small. Furthermore, we show that these schemes can be interpreted as projector-splitting integrators and are strongly related to the scheme proposed in [29, 30], to which our stability analysis applies as well. The analysis is supported by numerical results showing the sharpness of the obtained stability conditions.

Yoshihito Kazashi, Fabio Nobile, Eva Vidlicková

We consider the Dynamical Low Rank (DLR) approximation of random parabolic equations and propose a class of fully discrete numerical schemes. Similarly to the continuous DLR approximation, our schemes are shown to satisfy a discrete variational formulation. By exploiting this property, we establish stability of our schemes: we show that our explicit and semi-implicit versions are conditionally stable under a parabolic type CFL condition which does not depend on the smallest singular value of the DLR solution; whereas our implicit scheme is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit scheme can be unconditionally stable if the randomness in the system is sufficiently small. Furthermore, we show that these schemes can be interpreted as projector-splitting integrators and are strongly related to the scheme proposed by Lubich et al. [BIT Num. Math., 54:171-188, 2014; SIAM J. on Num. Anal., 53:917-941, 2015], to which our stability analysis applies as well. The analysis is supported by numerical results showing the sharpness of the obtained stability conditions.

The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very appealing. It can be seen as a reduced basis method, thus solvable at a relatively low computational cost, in which the solution is expanded as a linear combination of a few deterministic functions with random coefficients. The distinctive feature of the DLRA is that both the deterministic functions and random coefficients are computed on the fly and are free to evolve in time, thus adjusting at each time to the current structure of the random solution. This is achieved by suitably projecting the dynamics onto the tangent space of a manifold consisting of all random functions with a fixed rank. In this thesis, we aim at further analysing and applying the DLR methods to time-dependent problems.Our first work considers the DLRA of random parabolic equations and proposes a class of fully discrete numerical schemes.Similarly to the continuous DLRA, our schemes are shown to satisfy a discrete variational formulation.By exploiting this property, we establish the stability of our schemes: we show that our explicit and semi-implicit versions are conditionally stable under a ``parabolic'' type CFL condition which does not depend on the smallest singular value of the DLR solution; whereas our implicit scheme is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit scheme can be unconditionally stable if the randomness in the system is sufficiently small. The analysis is supported by numerical results showing the sharpness of the obtained stability conditions. The discrete variational formulation is further applied in our second work, which derives a-priori and a-posteriori error estimates for the discrete DLRA of a random parabolic equation obtained by the three newly-proposed schemes. Under the assumption that the right-hand side of the dynamical system lies in the tangent space up to a small remainder, we show that the solution converges with standard convergence rates w.r.t. the time, spatial, and stochastic discretization parameters, with constants independent of singular values.We follow by presenting a residual-based a-posteriori error estimation for a heat equation with a random forcing term and a random diffusion coefficient which is assumed to depend affinely on a finite number of independent random variables. The a-posteriori error estimate consists of four parts: the finite element method error, the time discretization error, the stochastic collocation error, and the rank truncation error. These estimators are then used to drive an adaptive choice of FE mesh, collocation points, time steps, and time-varying rank.The last part of the thesis examines the idea of applying the DLR method in data assimilation problems, in particular the filtering problem. We propose two new filtering algorithms. They both rely on complementing the DLRA with a Gaussian component. More precisely, the DLR portion captures the non-Gaussian features in an evolving low-dimensional subspace through interacting particles, whereas each particle carries a Gaussian distribution on the whole ambient space. We study the effectiveness of these algorithms on a filtering problem for the Lorenz-96 system.