Many of the applications of graphene rely on its uneven stiffness and high thermal conductivity, but the mechanical properties of graphene—and, in general, of all two-dimensional materials—are still not fully understood. Harmonic theory predicts a quadrati ...
Many-body Green's functions encode all the properties and excitations of interacting electrons. While these are challenging to be evaluated accurately on a classical computer, recent efforts have been directed toward finding quantum algorithms that may pro ...
We propose an improved quantum algorithm to calculate the Green's function through real-time propagation, and use it to compute the retarded Green's function for the two-, three-, and four-site Hubbard models. This protocol significantly reduces the number ...
Phonon-assisted luminescence is a key property of defect centers in semiconductors, and can be measured to perform the readout of the information stored in a quantum bit, or to detect temperature variations. The investigation of phonon-assisted luminescenc ...
The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the cl ...
Lattice dynamics in low-dimensional materials and, in particular, the quadratic behaviour of the flexural acoustic modes play a fundamental role in their thermomechanical properties. A first-principles evaluation of these can be very demanding, and can be ...