Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Impressive progress in 3D shape extraction led to representations that can capture object geometries with high fidelity. In parallel, primitive-based methods seek to represent objects as semantically consistent part arrangements. However, due to the simpli ...
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
EPFL2022
,
Existing deep architectures cannot operate on very large signals such as megapixel images due to computational and memory constraints. To tackle this limitation, we propose a fully differentiable end-to-end trainable model that samples and processes only a ...
Idiap2019
, , ,
Transformers achieve remarkable performance in several tasks but due to their quadratic complexity, with respect to the input’s length, they are prohibitively slow for very long sequences. To address this limitation, we express the self-attention as a line ...
Transformers have been proven a successful model for a variety of tasks in sequence modeling. However, computing the attention matrix, which is their key component, has quadratic complexity with respect to the sequence length, thus making them prohibitivel ...
Deep neural network training spends most of the computation on
examples that are properly handled, and could be ignored.We propose to mitigate this phenomenon with a principled importance
sampling scheme that focuses computation on "informative" examples ...