Dimensionality provides a clear fingerprint on the dispersion of infrared-active, polar-optical phonons. For these phonons, the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials; this splitting actually br ...
Over the past few decades, nanostructures have garnered significant attention due to their potential for embodying new physical paradigms and delivering cutting-edge technological applications. Dimensionality strongly affects the vibrational, electron-phon ...
Field-effect transistors (FETs) based on two-dimensional materials (2DMs) with atomically thin channels have emerged as a promising platform for beyond-silicon electronics. However, low carrier mobility in 2DM transistors driven by phonon scattering remain ...
The electronic and vibrational properties and electron-phonon couplings of one-dimensional materials will be key to many prospective applications in nanotechnology. Dimensionality strongly affects these properties and has to be correctly accounted for in f ...