Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This work develops a distributed optimization algorithm with guaranteed exact convergence for a broad class of left-stochastic combination policies. The resulting exact diffusion strategy is shown to have a wider stability range and superior convergence pe ...
The massive deployment of distributed acquisition and signal processing systems, as well as the ubiquity of connected devices, is currently contributing to the development of graph signal processing. Nevertheless, this discipline still suffers from the lac ...
In this paper, we study diffusion social learning over weakly connected graphs. We show that the asymmetric flow of information hinders the learning abilities of certain agents regardless of their local observations. Under some circumstances that we clarif ...
This paper examines the learning mechanism of adaptive agents over weakly connected graphs and reveals an interesting behavior on how information flows through such topologies. The results clarify how asymmetries in the exchange of data can mask local info ...
The article examines in some detail the convergence rate and mean-square-error performance of momentum stochastic gradient methods in the constant step-size and slow adaptation regime. The results establish that momentum methods are equivalent to the stand ...
The multitask diffusion LMS is an efficient strategy to simultaneously infer, in a collaborative manner, multiple parameter vectors. Existing works on multitask problems assume that all agents respond to data synchronously. In several applications, agents ...
The popular least-mean-squares (LMS) algorithm for adaptive filtering is nonrobust against impulsive noise in the measurements. The presence of this type of noise degrades the transient and steady-state performance of the algorithm. Since the distribution ...
In this work, we consider distributed adaptive learning over multitask mean-square-error (MSE) networks where each agent is interested in estimating its own parameter vector, also called task, and where the tasks at neighboring agents are related according ...
This paper examines the close interplay between cooperation and adaptation for distributed detection schemes over fully decentralized networks. The combined attributes of cooperation and adaptation are necessary to enable networks of detectors to continual ...
Institute of Electrical and Electronics Engineers2016
Complexity is a double-edged sword for learning algorithms when the number of available samples for training in relation to the dimension of the feature space is small. This is because simple models do not sufficiently capture the nuances of the data set, ...