**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Tomas Masák

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Courses taught by this person (2)

MATH-516: Applied statistics

The course will provide an overview of everyday challenges in applied statistics through case studies. Students will learn how to use core statistical methods and their extensions, and will use computational and problem-solving tools to provide reproducible solutions for the problems presented.

MATH-517: Statistical computation and visualisation

The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice proposing efficient solutions, and effectively communicating the results with stakeholders.

Related research domains (4)

Related publications (3)

Covariance

In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of th

Estimator

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (th

Bias of an estimator

In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rul

Loading

Loading

Loading

People doing similar research (38)

Related units (4)

Tomas Masák, Victor Panaretos, Tomas Rubin

Nonparametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in the densely observed regime. Instead, we consider the sparse regime, where the latent surfaces are observed only at few irregular locations with additive measurement error, and propose an estimator of covariance based on local linear smoothers. Consequently, the assumption of separability reduces the intrinsically four-dimensional smoothing problem into several two-dimensional smoothers and allows the proposed estimator to retain the classical minimax-optimal convergence rate for two-dimensional smoothers. Even when separability fails to hold, imposing it can be still advantageous as a form of regularization. A simulation study reveals a favorable bias-variance tradeoff and massive speed-ups achieved by our approach. Finally, the proposed methodology is used for qualitative analysis of implied volatility surfaces corresponding to call options, and for prediction of the latent surfaces based on information from the entire dataset, allowing for uncertainty quantification. Our cross-validated out-of-sample quantitative results show that the proposed methodology outperforms the common approach of pre-smoothing every implied volatility surface separately. Supplementary materials for this article are available online.

The problem of covariance estimation for replicated surface-valued processes is examined from the functional data analysis perspective. Considerations of statistical and computational efficiency often compel the use of separability of the covariance, even though the assumption may fail in practice. We consider a setting where the covariance structure may fail to be separable locally-either due to noise contamination or due to the presence of a nonseparable short-range dependent signal component. That is, the covariance is an additive perturbation of a separable component by a nonseparable but banded component. We introduce nonparametric estimators hinging on the novel concept of shifted partial tracing, enabling computationally efficient estimation of the model under dense observation. Due to the denoising properties of shifted partial tracing, our methods are shown to yield consistent estimators even under noisy discrete observation, without the need for smoothing. Further to deriving the convergence rates and limit theorems, we also show that the implementation of our estimators, including prediction, comes at no computational overhead relative to a separable model. Finally, we demonstrate empirical performance and computational feasibility of our methods in an extensive simulation study and on a real dataset. Supplementary materials for this article are available online.

This thesis focuses on non-parametric covariance estimation for random surfaces, i.e.~functional data on a two-dimensional domain. Non-parametric covariance estimation lies at the heart of functional data analysis, andconsiderations of statistical and computational efficiency often compel the use of separability of the covariance, when working with random surfaces. We seek to provide efficient alternatives to this ambivalent assumption.In Chapter 2, we study a setting where the covariance structure may fail to be separable locally -- either due to noise contamination or due to the presence of a non-separable short-range dependent signal component. That is, the covariance is an additive perturbation of a separable component by a non-separable but banded component. We introduce non-parametric estimators hinging on shifted partial tracing -- a novel concept enjoying strong denoising properties. We illustrate the usefulness of the proposed methodology on a data set of mortality surfaces.In Chapter 3, we propose a distinctive decomposition of the covariance, which allows us to understand separability as an unconventional form of low-rankness. From this perspective, a separable covariance has rank one. Allowing for a higher rank suggests a structured class in which any covariance can be approximated up to an arbitrary precision. The key notion of the partial inner product allows us to generalize the power iteration method to general Hilbert spaces and estimate the aforementioned decomposition from data. Truncation and retention of the leading terms automatically induces a non-parametric estimator of the covariance, whose parsimony is dictated by the truncation level. Advantages of this approach, allowing for estimation beyond separability, are demonstrated on the task of classification of EEG signals.While Chapters 2 and 3 propose several generalizations of separability in the densely sampled regime, Chapter 4 deals with the sparse regime, where the latent surfaces are observed only at few irregular locations. Here, a separable covariance estimator based on local linear smoothers is proposed, which is the first non-parametric utilization of separability in the sparse regime. The assumption of separability reduces the intrinsically four-dimensional smoothing problem into several two-dimensional smoothers and allows the proposed estimator to retain the classical minimax-optimal convergence rate for two-dimensional smoothers. The proposed methodology is used for a qualitative analysis of implied volatility surfaces corresponding to call options, and for prediction of the latent surfaces based on information from the entire data set, allowing for uncertainty quantification. Our quantitative results show that the proposed methodology outperforms the common approach of pre-smoothing every implied volatility surface separately.Throughout the thesis, we put emphasis on computational aspects, since those are the main reason behind the immense popularity of separability. We show that the covariance structures of Chapters 2 and 3 come with no (asymptotic) computational overhead relative to assuming separability. In fact, the proposed covariance structures can be estimated and manipulated with the same asymptotic costs as the separable model. In particular, we develop numerical algorithms that can be used for efficient inversion, as required e.g.~for prediction. All the methods are implemented in R and available on~GitHub.