We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their microscopic dynamics, described by a many-body Fokker-Planck equation. The model includes both intrinsic torques ind ...
We present a hydrodynamic theory for systems of dipolar active Brownian particles which, in the regime of weak dipolar coupling, predicts the onset of motility-induced phase separation (MIPS), consistent with Brownian dynamics (BD) simulations. The hydrody ...
We present a comprehensive study of a model system of repulsive self-propelled disks in two dimensions with ferromagnetic and nematic velocity alignment interactions. We characterize the phase behavior of the system as a function of the alignment and self- ...
In this thesis, we study systems of active particles interacting via generic torques of different nature. We analyze the phase behavior of these systems, which results from the interplay between self-propulsion, excluded-volume and torques.
We tackle the p ...