Let c denote the largest constant such that every C-6-free graph G contains a bipartite and C-4-free subgraph having a fraction c of edges of G. Gyori, Kensell and Tompkins showed that 3/8
In this note, we improve on results of Hoppen, Kohayakawa and Lefmann about the maximum number of edge colorings without monochromatic copies of a star of a fixed size that a graph on n vertices may admit. Our results rely on an improved application of an ...
Given a graph H and a set of graphs F, let ex(n, H, F) denote the maximum possible number of copies of H in an T-free graph on n vertices. We investigate the function ex(n, H, F), when H and members of F are cycles. Let C-k denote the cycle of length k and ...
Suppose that the vertices of a graph G are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study th ...
Let F be a fixed graph. The rainbow Turan number of F is defined as the maximum number of edges in a graph on n vertices that has a proper edge-coloring with no rainbow copy of F (i.e., a copy of F all of whose edges have different colours). The systematic ...
The maximum size of anr-uniform hypergraph without a Berge cycle of length at leastkhas been determined for allk >= r+ 3 by Furedi, Kostochka and Luo and fork
A clique covering of a graph G is a set of cliques of G such that any edge of G is contained in one of these cliques, and the weight of a clique covering is the sum of the sizes of the cliques in it. The sigma clique cover number scc(G) of a graph G, is de ...
We introduce the Turan problem for edge ordered graphs. We call a simple graph edge ordered, if its edges are linearly ordered. An isomorphism between edge ordered graphs must respect the edge order. A subgraph of an edge ordered graph is itself an edge or ...
Suppose that the vertices of a graph G are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study th ...