**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Hadi Papi

This person is no longer with EPFL

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (2)

Henrik Moodysson Rønnow, Ivica Zivkovic, Virgile Yves Favre, Hadi Papi, Hossein Ahmadvand

The magnetic and structural properties of polycrystalline Co4-xNixNb2O9 (x = 1, 2) have been investigated by neutron powder diffraction, magnetization and heat capacity measurements, and density functional theory (DFT) calculations. For x = 1, the compound crystallizes in the trigonal P (3) over bar c1 space group. Below T-N = 31 K it develops a weakly noncollinear antiferromagnetic structure with magnetic moments in the ab plane. The compound with x = 2 has crystal structure of the orthorhombic Pbcn space group and shows a hard ferrimagnetic behavior below T-C = 47 K. For this compound a weakly noncollinear ferrimagnetic structure with two possible configurations in the ab plane was derived from neutron diffraction study. By calculating magnetic anisotropy energy via DFT, the ground-state magnetic configuration was determined for this compound. The heat capacity study in magnetic fields up to 140 kOe provides further information on the magnetic structure of the compounds.

2019We report a systematic study of the magnetoelectric (ME) voltage coefficient as a complex quantity in the particulate composite of ferroelectric solid solution 0.94Pb(Fe1/2N1/2)O-3-0.06PbTiO(3)(PFN-PT) with CoFe2O4(CFO) and NiFe2O4 (NFO) ferrites. The results show that the real part of the ME voltage coefficient (alpha') is highly influenced by the magnetostrictive phase through lambda(H). NFO produces larger alpha' at a lower magnetic field, which originates from the softer magnetic properties. In addition, alpha' was found to be positive for NFO composite, while CFO composite shows a negative ME voltage coefficient at high magnetic fields. We argue that the field dependence of alpha' can be interpreted using the dynamic piezomagnetic coefficient, q(ac) = partial derivative lambda(ac)/partial derivative H. The imaginary part of the ME voltage coefficient (alpha '') was also determined for all composites. Both the alpha' and alpha '' show a peak at the same magnetic field, which is attributed to the maximum dynamic piezomagnetism when the magnetic domains are collectively rotated by the dc bias magnetic field. Our results show that the ME voltage coefficient in the composites of PFN-PT/(Co,Ni)Fe2O4 is highly influenced by the content, magnetic softness and field dependence behaviour of magnetostriction of the piezomagnetic phase.

2019