In the ITER Tokamak, four Electron Cyclotron Heating Upper Launchers (ECHUL) are needed to control plasma instabilities at the rational surfaces, most importantly the q = 3/2 and q = 2/1 neoclassical tearing modes (NTMs). Each ECHUL is equipped with a set ...
Many future fusion devices will rely heavily, if not solely, on electron cyclotron (EC) heating subsystems to provide bulk heating, instability control (neoclassical tearing mode (NTM) stabilization), and thermal instability control. Efficient use of the i ...
On ITER, long pulse gyrotrons are required as a power source for electron cyclotron heating (ECH) and current drive (CD). The microwaves are guided from the gyrotrons, which are placed far from the Tokamak, into the plasma by transmission lines (TLs) and a ...
Four Electron Cyclotron Heating Upper Launchers (ECHUL) will be used at ITER to counteract magneto-hydrodynamic plasma instabilities by targeting them with up to 20 MW of mm-wave power at 170 GHz. The millimeter waves are guided through a set of fixed mirr ...
2021
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.