This work proposes the first fine-grained configurable cell array specifically tailored for the implementation of cryptographic algorithms that can be configured using widely adopted hardware description languages. Our solution can be added as a small, crypto-friendly reconfigurable hardware block to be included as an application-specific configurable building block in the next generation of FPGAs, exactly like DSP slices and embedded memory blocks were added in the past. Another application scenario uses our configurable cell array as a small embedded FPGA (eFPGA) which we envision to be added to an ASIC design or a microprocessor. This will solve the need for so-called cryptographic agility, allowing cryptographic algorithms to be upgraded or updated depending on newly detected vulnerabilities or changing standards.
Andrea Felice Caforio, Subhadeep Banik