The progress towards intelligent systems and digitalization relies heavily on the use of automation technology. However, the growing diversity of control objects presents significant challenges for traditional control approaches, as they are highly depende ...
Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
Despite the importance and pervasiveness of Wikipedia as one of the largest platforms for open knowledge, surprisingly little is known about how people navigate its content when seeking information. To bridge this gap, we present the first systematic large ...
This work presents a new computational optimization framework for the robust control of parks of Wave Energy Converters (WEC) in irregular waves. The power of WEC parks is maximized with respect to the individual control damping and stiffness coefficients ...
This thesis is situated at the crossroads between machine learning and control engineering. Our contributions are both theoretical, through proposing a new uncertainty quantification methodology in a kernelized context; and experimental, through investigat ...
Dynamical System (DS)-based closed-loop control is a simple and effective way to generate reactive motion policies that well generalize to the robotic workspace, while retaining stability guarantees. Lately the formalism has been expanded in order to handl ...
The thesis presents methods for controlling and planning distributed energy resources (DERs) in active distribution networks (ADNs). It deals with three main challenges: (i) developing and experimentally validating grid-aware real-time control frameworks, ...
We present a robust model predictive control (MPC) framework for linear systems facing bounded parametric uncertainty and bounded disturbances. Our approach deviates from standard MPC formulations by integrating multi-step predictors, which provide reduced ...
Frequency Response Function (FRF)-based control synthesis methods for Linear Time-Invariant (LTI) systems have been widely used in control theory and industry. Recently, there has been renewed interest in these methods, employing numerical optimization too ...
ML-based edge devices may face memory and computational errors that affect applications' reliability and performance. These errors can be the result of particular working conditions (e.g., radiation areas in physical experiments or avionics) or could be th ...