Microscopic four-point probe (u4PP) based on SU-8 cantilevers
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A detailed investigation and characterization of the local properties of individual nanoscopic structures is of great importance for the understanding of novel physical phenomena at the nanoscale as well as for the assessment of their possible use in futur ...
Organic semiconductors are promising materials for future electronic and electroluminescence applications. A detailed understanding of organic layers and nano-sized crystals down to single molecules can address fundamental questions of contacting organic s ...
The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 or nanoscaled structures, standard silicon atomic forc ...
Nanocomposites based on an organic polymer and inorganic nanocrystals (NCs) represent a class of high impact functional materials able to convey the unique size and shape dependent properties of nano-objects to highly processable resists.[1] In this work, ...
The combination of the topographic resolution of Scanning Probe Microscopy with the subwavelength information of light/matter interaction leads to a new instrument called Scanning Near-field Optical Microscope (SNOM). This new instrument is an ideal tool t ...
Nanocomposites based on an organic polymer and inorganic nanocrystals (NCs) represent a class of high impact functional materials able to convey the unique size and shape dependent properties of nano-objects to highly processable resists.[1] In this work, ...
In this paper, we report on the integration technique and fabrication of a scanning probe interrogating the location of charges and their tracks inside quantum devices. Our unique approach is to pattern the charged sensor into a high topography micromechan ...
The coupling of stimuli-responsive macromolecules to nanostructured surfaces opens the perspective for the fabrication and integration of "smart" micro- and nano-electro-mechanical systems (MEMS&NEMS) in which the smallest motile unit is the polymeric chai ...
Electron transport through metal-molecule contacts greatly affects the operation and performance of electronic devices based on organic semiconductors(1-4) and is at the heart of molecular electronics exploiting single-molecule junctions(5-8). Much of our ...
The era of scanning probe microscopy (SPM) started twenty years ago. A cut gold cantilever with a glued diamond stylus served as the scanning probe. Within a few years the crystalline silicon (Si) became the – up to today – predominant SPM probe material. ...