Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents a new method for learning overcomplete dictionaries adapted to efficient joint representation of stereo images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms o ...
Institute of Electrical and Electronics Engineers2011
The goal of this paper is to propose diffusion LMS techniques for distributed estimation over adaptive networks, which are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
This poster is a summary of recent work published in: Spread spectrum for imaging techniques in radio interferometry, Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, Mon. Not. R. Astron. Soc., 2009, Preprint arXiv:0907.0944v1. We consider the probe of ...
We propose a new method for imaging sound speed in breast tissue from measurements obtained by ultrasound tomography (UST) scan- ners. Given the measurements, our algorithm finds a sparse image representation in an overcomplete dictionary that is adapted t ...
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
This paper analyzes the performance of the simple thresholding algorithm for sparse signal representations. In particular, in order to be more realistic we introduce a new probabilistic signal model which assumes randomness for both the amplitude and also ...
We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low miscla ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2010
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify with a ...