Dimensionality Reduction with Adaptive Approximation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose two new and enhanced algorithms for greedy sampling of high- dimensional functions. While the techniques have a substantial degree of generality, we frame the discussion in the context of methods for empirical interpolation and the devel- opment ...
Sensor networks are commonly deployed to measure data from the environment and accurately estimate certain parameters. However, the number of deployed sensors is often limited by several constraints, such as their cost. Therefore, their locations must be o ...
In this work a new method for automatic image classification is proposed. It relies on a compact representation of images using sets of sparse binary features. This work first evaluates the Fast Retina Keypoint binary descriptor and proposes imp ...
Nonlocal means (NLM) is an effective denoising method that applies adaptive averaging based on similarity between neighborhoods in the image. An attractive way to both improve and speed-up NLM is by first performing a linear projection of the neighborhood. ...
Conventional linear subspace learning methods like principal component analysis (PCA), linear discriminant analysis (LDA) derive subspaces from the whole data set. These approaches have limitations in the sense that they are linear while the data distribut ...
Institute of Electrical and Electronics Engineers2011
In this paper, a method for semi-supervised multiview feature extraction based on the multiset regularized kernel canonical correlation analysis (kCCA) is proposed for the classification of hyperspectral images. The covariance matrix of this type of data i ...
We propose a dimensionality reducing matrix design based on training data with constraints on its Frobenius norm and number of rows. Our design criteria is aimed at preserving the distances between the data points in the dimensionality reduced space as muc ...
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold lear ...
This paper presents an application of the kernel principal component analysis aiming at aligning optical images before the application of change detection techniques. The approach relies on the extraction of nonlinear features from a selected subset of pix ...
Algorithms for distributed agreement are a powerful means for formulating distributed versions of existing centralized algorithms. We present a toolkit for this task and show how it can be used systematically to design fully distributed algorithms for stat ...