Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Communication over unknown binary symmetric channels with instantaneous and perfect feedback is considered. We describe a universal scheme based on a decision feedback strategy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A binary symmetric channel (or BSCp) is a common communications channel model used in coding theory and information theory. In this model, a transmitter wishes to send a bit (a zero or a one), and the receiver will receive a bit. The bit will be "flipped" with a "crossover probability" of p, and otherwise is received correctly. This model can be applied to varied communication channels such as telephone lines or disk drive storage.
In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.
An important class of modern channel codes is the capacity-achieving sequences of low-density parity-check block codes. Such sequences are usually designed for the binary erasure channel and are decoded by iterative message-passing algorithms. In this pape ...
Commitment is a key primitive which resides at the heart of several cryptographic protocols. Noisy channels can help realize information-theoretically secure commitment schemes; however, their imprecise statistical characterization can severely impair such ...
We study the stability of low-density parity-check codes under blockwise or bitwise maximum a posteriori decoding, where transmission takes place over a binary-input memoryless output-symmetric channel. Our study stems from the consideration of constructin ...