Publication

Development of applications in WAMS and WACS: an international cooperation experience

Natalia Bondareva, Natalya Borodina
2006
Conference paper
Abstract

This paper focuses on applications in the area of WAMS (wide area measurement systems) and WACS (wide area control systems) development. A main issue is the report of an international cooperation oriented to test new algorithms and methods in this field. A feature of the cooperation has been the planning and carrying out of the common full-scale experiment in power systems aimed to investigate the feasibility in the implementation of new technologies of monitoring and control. The cooperation experience of the full-scale experiment at the Russian Far East Interconnected Power System is described in the paper

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (14)
Control theory
Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required.
Scale of temperature
Scale of temperature is a methodology of calibrating the physical quantity temperature in metrology. Empirical scales measure temperature in relation to convenient and stable parameters or reference points, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles: using the lowest possible temperature as the zero point, and selecting a convenient incremental unit. Celsius, Kelvin, and Fahrenheit are common temperature scales.
Control engineering
Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world. The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance.
Show more
Related publications (33)

Hybrid Quadratic Programming - Pullback Bundle Dynamical Systems Control

Aude Billard, Bernardo Fichera

Dynamical System (DS)-based closed-loop control is a simple and effective way to generate reactive motion policies that well generalize to the robotic workspace, while retaining stability guarantees. Lately the formalism has been expanded in order to handl ...
SPRINGER INTERNATIONAL PUBLISHING AG2023

Data-driven and Safe Networked Control with Applications to Microgrids

Mustafa Sahin Turan

Today, automatic control is integrated into a wide spectrum of real-world systems such as electrical grids and transportation networks. Many of these systems comprise numerous interconnected agents, perform safety-critical operations, or generate large amo ...
EPFL2022

Developments on actuator management, plasma state reconstruction, and control on ASDEX Upgrade

Olivier Sauter, Federico Alberto Alfredo Felici, Mengdi Kong, Simon Van Mulders, Bernhard Sieglin

In present day tokamaks, the role of the control research is to support the physics experiments and to prepare technologies for future devices such as ITER and DEMO. This paper presents the developments done under the MST1 program collaboration on ASDEX Up ...
ELSEVIER SCIENCE SA2021
Show more
Related MOOCs (2)
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.