Conservation biologyRedirect2|Biological conservation|ConservationBiology (journal)|and|Biological Conservation (journal)Biological Conservation (journal)|and|Conservation Ecology (journal)Conservation Ecology (journal)|the popular movement|Conservationism Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions.
Fluid mechanicsFluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Nature conservationNature conservation is the moral philosophy and conservation movement focused on protecting species from extinction, maintaining and restoring habitats, enhancing ecosystem services, and protecting biological diversity. A range of values underlie conservation, which can be guided by biocentrism, anthropocentrism, ecocentrism, and sentientism, environmental ideologies that inform ecocultural practices and identities. There has recently been a movement towards evidence-based conservation which calls for greater use of scientific evidence to improve the effectiveness of conservation efforts.
Operators in C and C++This is a list of operators in the C and C++ programming languages. All the operators (except typeof) listed exist in C++; the column "Included in C", states whether an operator is also present in C. Note that C does not support operator overloading. When not overloaded, for the operators &&, ||, and , (the comma operator), there is a sequence point after the evaluation of the first operand. C++ also contains the type conversion operators const_cast, static_cast, dynamic_cast, and reinterpret_cast.
Spectral radiusIn mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·). Let λ1, ..., λn be the eigenvalues of a matrix A ∈ Cn×n. The spectral radius of A is defined as The spectral radius can be thought of as an infimum of all norms of a matrix.
Operator associativityIn programming language theory, the associativity of an operator is a property that determines how operators of the same precedence are grouped in the absence of parentheses. If an operand is both preceded and followed by operators (for example, ^ 3 ^), and those operators have equal precedence, then the operand may be used as input to two different operations (i.e. the two operations indicated by the two operators). The choice of which operations to apply the operand to, is determined by the associativity of the operators.
Weak formulationWeak formulations are important tools for the analysis of mathematical equations that permit the transfer of concepts of linear algebra to solve problems in other fields such as partial differential equations. In a weak formulation, equations or conditions are no longer required to hold absolutely (and this is not even well defined) and has instead weak solutions only with respect to certain "test vectors" or "test functions". In a strong formulation, the solution space is constructed such that these equations or conditions are already fulfilled.