Publication

Distributed sensing using polarization sensitive optical low-coherence reflectometry and fiber gratings

Dragan Coric
2007
EPFL thesis
Abstract

Optical low coherence reflectometry (OLCR) is non-destructive interferometric technique that allows measuring amplitude and phase of the light reflected from the device under test. OLCR is a powerful tool for the characterization of the various optical devices such as fiber gratings and optical waveguides. This thesis work had explored possibilities to combine the OLCR technique with fiber gratings to perform distributed strain and temperature measurements, and to develop novel sensing techniques as an alternative to classical spectral methods. Special attention is devoted to polarization sensitive measurements and techniques, and OLCR techniques that use only amplitude information, as an alternative to more complicated phase sensitive measurements. Using a polarization sensitive system two methods for the measurement of local birefringence of fiber Bragg gratings (FBG) using OLCR were developed. The first technique uses oscillations in the OLCR amplitude signal to directly obtain the beat length and the birefringence. The second method is based on the measurement of the OLCR phase and inverse scattering algorithm. Both methods were compared with birefringence obtained from spectral measurements, and very good agreement was obtained. The indirect method, based on local Bragg grating determination requires two independent measurements and mathematical reconstruction, but provides a very high spatial resolution of ≈ 25 µm. The grating length limits the minimum measurable birefringence in the direct method, but a good sensitivity of 4×10-6 was obtained, which corresponds to a Bragg wavelength shift of 4 pm. The spatial resolution is in the millimeter range in this case. The novel methods were successfully applied for the distributed measurement of birefringence of FBG under diametric load. New types of tunable devices and sensors – fiber Bragg gratings written in high attenuation fibers (HAF) were developed. Active tuning by heating was achieved by optical pumping of a pure single mode fiber without any mechanical or electrical parts, or deposited light absorption coatings. Tuning can be controlled by the applied pump power, the position of the grating, the HAF attenuation level, and the pumping configuration. The proposed design assures a high repeatability and long lifetime. Using OLCR these devices were successfully applied to measure the liquid level with a spatial resolution of 100 micrometers. Liquid level measurements that use both phase and amplitude, or only amplitude were demonstrated. The same principles could be easily applied to design other fiber grating devices (long-period, tilted etc), and sensors based on hot-wire anemometry, like flow or vacuum sensors.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Fiber Bragg grating
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. Hence a fiber Bragg grating can be used as an inline optical fiber to block certain wavelengths, can be used for sensing applications, or it can be used as wavelength-specific reflector.
Optical fiber
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables.
Photonic-crystal fiber
Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas.
Show more
Related publications (81)

Distributed measurement of mode group effective refractive index difference in a few mode optical fibers

Luc Thévenaz, Zhisheng Yang, Alejandro Dominguez Lopez

The possibility to perform distributed measurements of the effective refractive index difference between distinct modes in few mode optical fibers is demonstrated using phase sensitive optical time domain reflectometry. Effective refractive index differenc ...
2022

Investigating Novel Optical Fibres for More Advanced Distributed Optical Fibre Sensing

Malak Mohamed Hossameldeen Omar Mohamed Galal

The ever-growing need for distributed optical fibre sensors (DOFS) in numerous fields and applications demands continuous research towards the advancement of the existing sensing systems. The convenience in the field of DOFS lies in the several degrees of ...
EPFL2022

A Photonic Integrated Circuit-Based Erbium-doped Waveguide Amplifier

Tobias Kippenberg, Rui Ning Wang, Xinru Ji, Zheru Qiu, Junqiu Liu, Yang Liu, Jijun He

We demonstrate an erbium-doped waveguide amplifier by erbium ion implantation in Si3N4 photonic integrated circuits, achieving 145 mW on-chip output power and more than 30 dB small-signal gain, which is on par with commercial fiber amplifiers and beyond st ...
IEEE2022
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.